Determination of Glycosylation by Lectin Biochips and Biosensors Based on Surface Plasmon Resonance
Keywords:
biochip, biosensors, glycosylation, lectin, surface plasmon resonance, SPRAbstract
Lectin biochips and biosensors are used to detect and study the protein glycosylation. Glycosylation changes are accompanied by changes in physiological state, which may be associated with certain types of diseases such as cancer, rheumatoid arthritis, multiple sclerosis, etc. In recent years, this issue has been attracting more and more scientists and enormous advances have been achieved in this field. This work is focused on the use of surface plasmon resonance (SPR) in combination with lectin biosensors and biochips enabling tracking glycosylation and its changes. SPR is commonly used to detect proteins and to study the protein-protein and protein-drug interactions. Lectin SPR biochips additionally allow us to detect the glycan (glycoprotein)-lectin (protein) interactions. The great advantage of SPR, as compared to most other methods used for this purpose, is the possibility of real-time and label-free measurements. On the other hand, the measurement of large number of samples is time consuming. This is possible to overcome by using the SPR imaging (SPRi) techniques allowing simultaneous measurement of several samples. Practical applications of the lectin SPR biosensors and biochips are not only in biology and biomedicine research and diagnosis of diseases and detection of pathogenic microorganisms, but also in environmental monitoring, food control and even in the military for the detection of substances based on glycoprotein toxins.